zkcalen5082 zkcalen5082
  • 04-07-2019
  • Mathematics
contestada

Find the remainder when dividing 2^2013 by 15.

*Answer should be in modulo. Example: Find the remainder when dividing 2^100 by 21 and the answer is 2^100 = 16mod(21).*

Respuesta :

konrad509
konrad509 konrad509
  • 04-07-2019

[tex]2^{2013}=2^{4\cdot503+1}\\\\2^4=16\equiv 1\pmod{15}\\2^{4\cdot 503}\equiv 1\pmod{15}\\2^{4\cdot 503+1}\equiv 2\pmod{15}\\\\2^{2013}\equiv 2\pmod{15}[/tex]

Answer Link

Otras preguntas

To find an approximate value for a number is called?
Which equation could be used to solve the problem? The Jensens drove 400 miles in 8 hours. How many miles per hour did they drive (m)? a. m = 400 miles • 8 hou
round 88347 to the nearest hundred
Describe your favorite meal and write a persuasive argument to convince someone to try that meal. please help me
what issue united the republican party?
What times what equals 15
what effect did the geography of ancient greece have on its early development
A section of a boardwalk is made using 15boards. Each board is 9/1/4 inches wide. The total width of the section is 144 inches. The spacing between each board i
easy way to remember separatists were
Which integers are greater than –3? Choose all answers that are correct. a. –12 b. –6 c. –2 d. 1 all